Characterizing sparse preconditioner performance for the support vector machine kernel

نویسندگان

  • Anirban Chatterjee
  • Kelly Fermoyle
  • Padma Raghavan
چکیده

A two-class Support Vector Machine (SVM) classifier finds a hyperplane that separates two classes of data with the maximum margin. In a first learning phase, SVM involves the construction and solution of a primal-dual interiorpoint optimization problem. Each iteration of the interior-point method (IPM) requires a sparse linear system solution, which dominates the execution time of SVM learning. Solving this linear system can often be computationally expensive depending on the conditioning of the matrix. Consequently, preconditioned linear systems can lead to improved SVM performance while maintaining the classification accuracy. In this paper, we seek to characterize the role of preconditioning schemes for enhancing the SVM classifier performance. We compare and report on the solution time, convergence, and number of Newton iterations of the iterior-point method and classification accuracy of the SVM for 6 well-accepted preconditioning schemes and datasets chosen from well-known machine learning repositories. In particular, we introduce Δ-IPM that sparsifies the linear system at each iteration of the IPM. Our results indicate that on average the Jacobi and SSOR preconditioners perform 10.01 times better than other preconditioning schemes for IPM and 8.83 times better for Δ-IPM. Also, across all datasets Jacobi and SSOR perform between 2 to 30 times better than other schemes in both IPM and Δ-IPM. Moreover, Δ-IPM obtains a speedup over IPM performance on average by 1.25 and as much as 2 times speedup in the best case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

The Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Least-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture

This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...

متن کامل

Acoustic detection of apple mealiness based on support vector machine

Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010